Forest thinning experiment confirms ozone deposition to forest canopy is dominated by reaction with biogenic VOCs

نویسندگان

  • A. H. Goldstein
  • M. McKay
  • M. R. Kurpius
  • G. W. Schade
  • A. Lee
  • R. Holzinger
  • R. A. Rasmussen
چکیده

[1] Ecosystem ozone uptake can occur through stomatal and surface deposition and through gas phase chemical reactions. In a California pine forest, thinning dramatically enhanced both monoterpene emission and ozone uptake. These simultaneous enhancements provide strong evidence that ozone reactions with unmeasured biogenically emitted volatile organic compounds (BVOCs) dominate ozone uptake, and these unmeasured BVOC emissions are approximately 10 times the measured monoterpene flux. Branch enclosure measurements confirm more than 100 BVOCs are emitted but not typically observed above the forest. These BVOCs likely impact tropospheric composition as a previously unquantified source of secondary oxygenated VOCs, organic aerosols, and OH radicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas-phase chemistry dominates O3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere

[1] Tropospheric ozone (O3) effectively deposits to forested ecosystems but the fate of O3 within the forest canopy is unresolved. We partitioned total measured ecosystem daytime O3 deposition to a ponderosa pine (Pinus ponderosa) forest into its major loss pathways; stomatal uptake, non-stomatal surface deposition, and gas-phase chemistry. Total O3 flux was dominated by gas-phase chemistry dur...

متن کامل

Effect of thinning on surface fluxes in a boreal forest

[1] Thinning is a routine forest management operation that changes tree spacing, number, and size distribution and affects the material flows between vegetation and the atmosphere. Here, using direct micrometeorological ecosystem-scale measurements, we show that in a boreal pine forest, thinning decreases the deposition velocities of fine particles as expected but does not reduce the carbon sin...

متن کامل

Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia

Within the project EUropean Studies on Trace gases and Atmospheric CHemistry as a contribution to Large-scale Biosphere-atmosphere experiment in Amazonia (LBA-EUSTACH), we performed tower-based eddy covariance measurements of O3 flux above an Amazonian primary rain forest at the end of the wet and dry season. Ozone deposition revealed distinct seasonal differences in the magnitude and diel vari...

متن کامل

Observations of elevated formaldehyde over a forest canopy suggest missing sources from rapid oxidation of arboreal hydrocarbons

To better understand the processing of biogenic VOCs (BVOCs) in the pine forests of the US Sierra Nevada, we measured HCHO at Blodgett Research Station using Quantum Cascade Laser Spectroscopy (QCLS) during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) of late summer 2007. Four days of the experiment exhibited particularly copious HCHO, with midday peaks between 15–2...

متن کامل

The bi-directional exchange of oxygenated VOCs between a loblolly pine (Pinus taeda) plantation and the atmosphere

Using new in-situ field observations of the most abundant oxygenated VOCs (methanol, acetaldehyde, acetone, C3/C4 carbonyls, MVK+MAC and acetic acid) we were able to constrain emission and deposition patterns above and within a loblolly pine (Pinus taeda) plantation with a sweetgum (Liquidambar styraciflua) understory. During the day canopy scale measurements showed significant emission of meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004